Graphonomy setting on ubuntu server
Server SPEC
OS/Version | CPU | GPU/Version |
---|---|---|
Ubuntu-server/20.04 | Intel(R) Xeon(R) Silver 4110 CPU | NVIDIA TITAN Xp/515.65.01 |
Graphonomy - Repository
Install Container
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 515.65.01 Driver Version: 515.65.01 CUDA Version: 11.7 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA TITAN Xp Off | 00000000:B3:00.0 Off | N/A |
| 21% 37C P0 57W / 250W | 0MiB / 12288MiB | 1% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
# https://hub.docker.com/r/nvidia/cuda
docker pull nvidia/9.0-cudnn7-devel-ubuntu16.04
docker run -i -t --gpus all --shm-size 16gb --name Graphonomy nvidia/9.0-cudnn7-devel-ubuntu16.04
Setup in Container
# Apt Updata && Upgrade && install
apt-get update && apt-get -y dist-upgrade
apt-get install -y wget git vim build-essential zip libgl1-mesa-glx libglib2.0-0
Install package
# miniconda install python3.7 version
wget https://repo.anaconda.com/miniconda/Miniconda3-py37_4.12.0-Linux-x86_64.sh
sh Miniconda3-py37_4.12.0-Linux-x86_64.sh
# conda package install
conda install pytorch=0.4.1 cuda90 torchvision -c pytorch
conda install -c anaconda scipy networkx && conda install -c conda-forge tensorboardx opencv matplotlib
Data Preparation
Follow the Repo Getting Started